
Density-Based Subspace Clustering

in Heterogeneous Networks

Brigitte Boden1, Martin Ester2, and Thomas Seidl1

1 RWTH Aachen University, Aachen, Germany
{boden,seidl}@cs.rwth-aachen.de

2 Simon Fraser University, Burnaby, BC, Canada
ester@cs.sfu.ca

Abstract. Many real-world data sets, like data from social media or
bibliographic data, can be represented as heterogeneous networks with
several vertex types. Often additional attributes are available for the
vertices, such as keywords for a paper. Clustering vertices in such net-
works, and analyzing the complex interactions between clusters of differ-
ent types, can provide useful insights into the structure of the data. To
exploit the full information content of the data, clustering approaches
should consider the connections in the network as well as the vertex at-
tributes. We propose the density-based clustering model TCSC for the
detection of clusters in heterogeneous networks that are densely con-
nected in the network as well as in the attribute space. Unlike previous
approaches for clustering heterogeneous networks, TCSC enables the de-
tection of clusters that show similarity only in a subset of the attributes,
which is more effective in the presence of a large number of attributes.

1 Introduction

In many applications, data of various kinds are available, and there is a need for
analyzing such data. Clustering, the task of grouping objects based on their sim-
ilarity, is one of the most important data mining tasks, and clustering algorithms
for different kinds of data exist. Graph clustering aims at grouping the vertices
of a network into clusters such that many edges between vertices of the same
cluster exist, i.e. the vertices are densely connected. While most graph cluster-
ing methods are constrained to homogeneous networks (networks with a single
vertex type), real-world data can often better be represented by heterogeneous
networks with several vertex types. For example, bibliographic data can be rep-
resented as a network with the vertex types “paper” and “author”. When we
consider heterogeneous networks, a novel challenge for clustering arises: Besides
detecting clusters, clustering approaches should also analyze the interactions be-
tween clusters of different types, e.g. “which groups of authors are interested in
which groups of papers?” Furthermore, real-world data often contains additional
information (“attributes”) about the vertices of a graph. E.g., a “paper” vertex
can be further described by a vector of keywords. To exploit the full information
content of the data, the similarity of the vertex attributes should be considered

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 149–164, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

150 B. Boden, M. Ester, and T. Seidl

Paper
clusters

Author
clusters

Fig. 1. Example author-paper clustering

for the clustering, as well as the connections in the network. An important as-
pect is that not all of the attributes may be relevant for a cluster. E.g., for a
cluster of papers on similar topics, we would expect the papers to have some,
but not all keywords in common. Thus, we aim at detecting clusters of vertices
in heterogeneous networks that are densely connected and also show similarity
in a subset of the attributes (called subspace), similar to the principle of sub-
space clustering for vector data [8]. To the best of our knowledge, there exists
no previous approach for subspace clustering in heterogeneous networks.

In principle, it would be possible to project the network to a homogeneous net-
work just containing vertices of one of the types (e.g. build a co-author network
by connecting authors with common papers). However, by doing this informa-
tion about the other types (e.g. the topics of the papers) is lost. Furthermore,
an important aspect in our work is analyzing the connections between clusters
of different types, which would not be possible at all in such a setting. In our
experimental section, we show the superiority of our approach over a baseline
using such a projection.

In our work, we consider heterogeneous networks that contain edges between
vertices of different types (e.g. a paper is connected to its authors), but can also
contain edges between vertices of the same type (e.g. citations between papers).
Furthermore, for each of the vertex types there can be additional attributes. In
such networks, we want to cluster the vertices of each type such that the clusters
of different types interact with each other. An important challenge is how to
model the interactions between the clusters. Intuitively, two clusters (of different
types) are connected if the vertices of each cluster are densely connected via the
vertices of the other cluster. Consider the example in Fig. 1. Here we observe
two author clusters and three paper clusters (two of which are overlapping). The
connections between the clusters indicate that the vertices of those clusters are
connected by many edges. Naturally, a group of authors can publish papers about
different topics, and also different groups of authors publish papers on the same
topic. Thus it makes sense that an author cluster can be connected to several
paper clusters and vice versa. Each cluster can interact with a different number
of clusters. Therefore, just connecting each cluster to a specified number of other
clusters would be problematic. Thus, in our approach the number of connections
of a cluster is not restricted.

We observe that there are different ways to represent a data set as a het-
erogeneous network. Information about entities (e.g. words contained in papers)
can be modeled in different ways: Either as an additional vertex type or as an
attribute of another vertex type. In our work, we model only those informa-

Density-Based Subspace Clustering in Heterogeneous Networks 151

tion types as vertex types that we want to cluster. Other types of information
are modeled as attributes. Furthermore, we want to highlight that there is no
unique definition of the clustering problem in heterogeneous networks. The ex-
isting approaches vary greatly in their clustering objectives. Some approaches
(e.g. [15]) cluster only the vertices of one type, while the vertices of other types
are considered as “attribute types” of the clustered type. Other approaches (e.g.
[13]) aim at clustering the vertices of all types such that each cluster contains
vertices of different types. In Fig. 1, those approaches would either partition the
authors into three clusters or merge two of the paper clusters in order to find a
clustering of both types. Other approaches ([16], [17]) partition the vertices of
each type separately, with the aim that the group membership of two vertices
determines the probability of an edge between them. In this paper1, we present
the cluster model TCSC (Typed Combined Subspace Cluster), which belongs to
the last, most general, category. In contrast to the previous approaches, TCSC
additionally considers the similarity of vertices in subspaces of their attributes
and allows the clusters to overlap, which makes sense in many applications.
However, redundancy in the clustering result due to too much overlap is avoided
by using a redundancy model. We introduce the algorithm HSC (Heterogeneous
Subspace Clustering) for detecting TCSC clusters and evaluate it in experiments
on real-world data sets.

2 Related Work

Combined Clustering of Graph and Attribute Data. Recently, several cluster-
ing approaches have been proposed that consider (homogeneous) graphs with
vertex attributes. These approaches can be seen as a combination of graph clus-
tering and vector clustering approaches. However, they mostly rely on fullspace-
clustering on the vertex attributes (e.g. [12,20,19]) or only consider binary at-
tributes [1]. The approaches [10,6,7] propose the combination of subspace clus-
tering and graph clustering, aiming at finding clusters of vertices that are densely
connected and as well show similar attribute values in a subset of their attributes.
However, none of them considers heterogeneous networks.

Clustering in Heterogeneous Networks. The existing approaches for cluster-
ing in heterogeneous networks vary greatly in the types of networks that they
consider, as well as in their clustering objectives. Several approaches [4,18] con-
sider graphs with a single vertex type and multiple edge types. In some cases,
such networks are called multi-dimensional [18] or multislice [11] networks. [4]
considers graphs with multiple edge types and edge attributes. In such graphs,
densely connected clusters are detected that also have similar attribute values.
Other approaches [2,16] consider bipartite graphs: [2] defines a null model for
modularity which considers bipartite networks and detects communities based
on this measure. [16] proposes a new modularity measure for bipartite graphs,
resulting in one partition of the vertices for each vertex type.

1 The contents of this paper are also included in the first author’s PhD thesis [3].

152 B. Boden, M. Ester, and T. Seidl

There also exist approaches that can handle graphs with an arbitrary number
of vertex types: [5,15] cluster star-structured heterogeneous networks with one
central type, where only the clustering of the vertices of the central type is
optimized. In [14], networks with several vertex types are considered, which are
not restricted to star-structured networks. The user has to specify a target type,
i.e. a vertex type that should be clustered. The other types are called “feature
types” and are used like attributes of the target type vertices. [13] considers a
heterogeneous network with incomplete vertex attributes. The authors mention
that only a subset of the attributes may be relevant for the clustering (similar to
the idea of subspace clustering). However, in this approach the user has to specify
the relevant set of attributes. In the resulting clustering, each cluster can contain
vertices of every type. The clustering is mostly based on the attributes, while the
links are only used to ensure a “structural consistency” (i.e. connected vertices
are clustered together with higher probability). However, the resulting clusters
do not have to be dense or even connected in the network. [9] propose a random-
walk based approach for community detection in heterogeneous networks, which
aims at finding a single community based on a set of seed items.

The most similar approach to our work is [17]. This approach considers evolv-
ing multi-mode networks, i.e. networks with different types of vertices that evolve
over time. The vertices of each type are clustered simultaneously, with the aim
that the group membership of two vertices determines their interaction. However,
the approach does not provide information about connections between groups.
Furthermore, clusters should evolve smoothly over the time steps. The proposed
method only considers multi-partite networks, but extensions for considering
edges between vertices of the same type and vertex attributes are mentioned.
In our experimental section, we compare this approach (with the extension for
using attributes) with our approach.

3 The TCSC Clustering Model

In this section, we introduce our TCSC model for clustering in heterogeneous
networks. Basically, a cluster consists of a set of vertices of the same type that
are densely connected via the vertices of the other types and show similar at-
tribute values in a subset of their dimensions (this subset is called the subspace
of the cluster). The model is partly based on the DB-CSC model [7] for homoge-
neous networks with vertex attributes. A new important challenge for heteroge-
neous networks is the detection of interactions between the clusters of different
types.

For defining the clusters, we adopt the principle of density-based clustering,
which allows the detection of dense clusters without restricting them to certain
shapes or sizes. Basically, in density-based clustering clusters are defined as dense
regions in the data space that are separated by sparse regions. In our work, we
aim at detecting clusters that are not only dense considering their attribute
values, but also are densely connected in the network via the vertices of their
interacting clusters of other types. Thus, the clusters in our model correspond

Density-Based Subspace Clustering in Heterogeneous Networks 153

to dense regions in the graph as well as in a subspace of the attribute space.
Therefore, we define the local neighborhood of a vertex such that it represents
the graph neighborhood as well as the neighborhood in the attribute space.

Formally, the input for our model is a vertex-labeled graph with T different
vertex types. Formally, G = (V,E, t, l) with vertices V , edges E, a type indicator
function t : V → {1, . . . , T } and a vertex labeling function l. Let Vi denote the
set of vertices of type i: Vi = {v ∈ V : t(v) = i} and Dimi the set of dimensions
for type i, then l : Vi → R

|Dimi|.
Neighborhood Definitions. For the clustering, we do not only consider vertices

as neighbors that are directly connected by an edge, but also vertices that are
connected via other vertices. For example, in a paper-author network we would
consider two authors as neighbors if they are co-authors of a common paper,
i.e. they are connected via two hops in the network. Therefore, we use the k-
neighborhood of a vertex to define its local neighborhood in the graph. Formally,
the graph k-neighborhood is defined as follows:

Definition 1 (Graph k-neighborhood). A vertex u is k-reachable from a
vertex v (over a set of vertices V) if ∃v1, . . . , vk ∈ V : v1 = v ∧ vk = u ∧ ∀j ∈
{1, . . . , k−1} : (vj , vj+1) ∈ E. The graph k-neighborhood of vertex v ∈ V is given
by: NV

k (v) = {u ∈ V | u is j-reachable from v (over V) ∧ j ≤ k} ∪ {v}.
Furthermore, we define the ε-neighborhood of a vertex in the attribute space.
Naturally, this neighborhood can only contain vertices of the same type:

Definition 2 (ε-neighborhood). The distance between two vertices x and y of
type i w.r.t. a subspace S ⊆ Dimi is defined as the maximum norm2 distS(x, y) =
maxd∈S |x[d] − y[d]| with the special case dist∅(x, y) = 0. The ε-neighborhood
of v ∈ V for a subspace S ⊆ Dimt(v) is defined as: NV

ε,S(v) = {u ∈ Vt(v) |
distS(l(u), l(v)) ≤ ε}
As we want to consider the connections in the graph and the similarity in the
attribute space simultaneously, we define a combined local neighborhood:3

Definition 3 (Combined local neighborhood). The combined neighborhood
of v ∈ V w.r.t. a subspace S ⊆ Dimt(v) is defined as: NV

S (v) = NV
k (v)∩NV

ε,S(v)

This neighborhood contains only vertices of the same type. This makes sense
for the clustering as each cluster should only contain vertices of a single type. In
Fig. 2, the combined neighborhood for k = 2, ε = 1 of vertex A considering only
dimension 1 would be NV

{1}(A) = {A,B,C,D,E}. For dimension 2, NV
{2}(A) =

{A,C,D,E, F}.
Modeling Clusters and their Interactions. In our cluster definition, we have to

ensure that all objects in a cluster are dense w.r.t. the combined neighborhood

2 We choose the maximum norm because we want to consider two vertices similar only
if they are similar in all of the dimensions in S.

3 Another idea would be to combine the graph and attribute distance into a unified
distance function. However, in that case a very small distance in the graph could
even out a larger distance in the attribute space and vice versa. Instead, we want
the vertices in the combined neighborhood to be similar in both regards.

154 B. Boden, M. Ester, and T. Seidl

type1

type2 1
1

7
8A

1 2
3

B

1
2

C

2
2D2

2

E

F

4
1

G

H

J

K
17
13 8

11

2

3

11
12

4

1
1

5

1
2

617
12

1
2

7

17
12

8
4

4
1

Fig. 2. Example with two vertex types

1
1

7
8

A

1

2
3

B
1
2

C
2
2D2

2

E

4
1F

17
12

H K
17
13

8
4

3

7
1
2

1
2

6 1
1

5

J
17
12

8
11

2C5

C4

C3

C1

C2

Fig. 3. Clustering for the example network

(ensured by property (1) in Def. 4) and the cluster is density-connected via the
neighborhoods (property (2)). Furthermore, we want to detect the interactions
between clusters of different types. Intuitively, two clusters of different types
should be “connected” to each other if many edges exist between the vertices of
these clusters. In other words, the connections to the vertices of the other cluster
should induce density in a cluster. Therefore, we define a cluster C of vertices of
type i w.r.t. a set of clusters of the other types. We call this set of clusters the
adjacent clusters of C, denoted by A(C). C has to be dense w.r.t. the union of
the adjacent clusters. Therefore, the combined neighborhood is computed using
only the vertices of the cluster itself and the union of the adjacent clusters:

Definition 4 (Typed Combined Subspace Cluster). A typed combined
subspace cluster C = (O,S) of type i in a graph G = (V,E, t, l) w.r.t. the pa-
rameters ki, εi and minPtsi and a set of adjacent clusters A(C) = {(Oj , Sj) |
Oj ⊆ (V \ Vi), j = 1, . . . , |A(C)|} consists of a set of vertices O ⊆ Vi and a set
of relevant dimensions S ⊆ Dimi

4 that fulfill the following properties:

(1) density: ∀v ∈ O : |NO∪(∪1≤j≤aC
Oj)

S (v)| ≥ minPtsi
(2) connectivity: ∀u, v ∈ O : ∃w1, . . . , wl ∈ O : w1 = u ∧ wl = v ∧ ∀i ∈

{1, . . . , l− 1} : wi ∈ N
O∪(∪1≤j≤aC

Oj)

S (wi+1)
(3) density w.r.t. all adjacent clusters: ∀(Oj , Sj) ∈ A : ∃W ⊆ O : (W,S) forms a

cluster w.r.t. the set A(W) = {(Oj , Sj)} (for non-bipartite graphs: ignoring
the edges (u, v) ∈ E : u, v ∈ O)

(4) reciprocity: ∀Cj ∈ A(C) : C ∈ A(Cj)
(5) maximality: ¬∃O′ ⊃ O : O′ fulfills (1) and (2)

To avoid adding unrelated clusters, we require that each adjacent cluster has
to induce density in at least a subset of C (property (3)). If there exist edges
between vertices of the same type, we ignore them for testing this density (else,
the cluster could be dense considering those edges alone, and thus the cluster
definition would be fulfilled w.r.t. arbitrary other clusters). To avoid adding

4 Generally, we require the subspace S to be non-empty, such that the vertices of
the cluster show similarity in at least one dimension. However, in a heterogeneous
network it is possible that not all of the vertex types have attributes. In this case, it
makes sense to allow the detection of clusters with empty subspace. Thus, the user
can choose if clusters with empty subspace should be included in the result.

Density-Based Subspace Clustering in Heterogeneous Networks 155

clusters that just incidentally induce density in a small subset of C, we require
a reciprocity of the adjacency between clusters (property (4)). Please note that
we do not require a maximality property on A(C) and redundant clusters can
be removed from A(C) later. Thus, a cluster C can fulfill the cluster definition
for different sets A(C). How to finally select A(C) for the clustering result is
discussed below.

The example network in Fig. 2 contains the following clusters (shown in Fig.
3) for the parameters k1 = k2 = 2, ε1 = ε2 = 1,minPts1 = minPts2 = 3:

– C1 = ({A,B,C,D,E}, {1, 2}), connected to C3

– C2 = ({A,B,C,D,E, F}, {2}), connected to C3

– C3 = ({1, 2, 3}, {1}), connected to C1, C2

– C4 = ({H, J,K}, {1, 2}), connected to C5

– C5 = ({5, 6, 7}, {1, 2}), connected to C4

Interestingness of a TCSC Cluster. As we detect clusters in different subspaces,
we can possibly find quite similar clusters in similar subspaces, like C1 and C2. To
avoid redundancy in the result, we have to be able to decide which of the clusters
is more interesting for our clustering result. Generally, we consider clusters with
many vertices as interesting. However, a higher dimensionality also makes a
cluster more interesting. Therefore, we introduce an interestingness function for
clusters that considers both criteria. The interestingness function for a typed
cluster is normalized by the overall number of vertices and the dimensionality
of the corresponding type:

Definition 5 (Interestingness Measure). The interestingness of a TCSC

cluster C = (O,S) of type i is defined as Q(C) = |O|·|S|
|Vi|·|Dimi| if |Dimi| > 0, and

Q(C) = |O|
|Vi| else.

In our example, Q(C1) = 0.35 and Q(C2) = 0.3. Thus, the two-dim. cluster C1

is preferred as it is only slightly smaller than the similar one-dim. cluster C2.

Parameters. Our model requires several parameters: ε, minPts and k have to
be set for each type. Setting these parameters for each type separately leads to
a greater flexibility of the model: Especially if the number of vertices for the
different types strongly differs, we should not expect the clusters of each type
to fulfill e.g. the same minPts value. In Section 5, we present a method for
finding good parameter settings for ε and minPts. For k, a suitable setting can
be directly obtained from the structure of the graph. E.g. for a bipartite paper-
author network, kauthor = 2 is a good choice as we need two hops to reach one
author from another author. If there exist intra-type edges, we can consider them
additionally by setting kauthor = 3. For networks with more types, the distances
between vertices of the same type can be larger, if vertices of different types
have to be traversed. In this case, higher k values are required. Unlike other
approaches, our model does not require the number of clusters as a parameter.

Selecting the Final Clustering Result. In order to avoid redundant clusters in
the result, we first define a binary redundancy relation between two clusters of

156 B. Boden, M. Ester, and T. Seidl

the same type, adopting the definition from the DB-CSC model [7]. A cluster is
considered redundant w.r.t. another cluster if its quality is lower and the clusters
show a high overlap in their vertex sets as well as their relevant subspaces:

Definition 6 (Redundancy between clusters). Given the redundancy pa-
rameters robj , rdim ∈ [0, 1], the binary redundancy relation ≺red is defined by:

For all clusters C = (O,S), C′ = (O′, S′): C ≺red C′ ⇔ Q(C) < Q(C′) ∧
|O∩O′|

|O| ≥ robj ∧ |S∩S′|
|S| ≥ rdim

In Fig. 3, C2 ≺red C1 (e.g. for robj = rdim = 0.5).
Now we can define the final result set, which should not contain clusters that

are redundant w.r.t. each other and has to be maximal w.r.t. this property.
Furthermore, we ensure a maximality property for the set of adjacent clusters
for a cluster C: If C,A(C) together form a cluster according to Def. 4, then in the
TCSC clustering the set of adjacent clusters of C must contain all the clusters
in A(C) except those that are redundant w.r.t. another cluster in A(C).

Definition 7 (TCSC clustering). Given the set Clusters of all TCSC clus-
ters, the resulting TCSC clustering Result ⊆ Clusters fulfills

– redundancy-freeness: ¬∃Ci, Cj ∈ Result : Ci ≺red Cj

– maximality: ∀Ci ∈ Clusters \Result : ∃Cj ∈ Result : Ci ≺red Cj

– maximality for adjacent clusters: ∀C : ∀Ci ∈ {Cx | C fulfills Def. 4 w.r.t.
A(C) ∪ {Cx}} \A(C) : ∃Cj ∈ A(C) : Ci ≺red Cj

Furthermore, we have to consider the connections between clusters of different
types. A cluster C ∈ Result may be adjacent to a cluster of another type that
is excluded from the result due to redundancy. In this case, by just deleting this
cluster we would lose the information about this connection. For solving this
problem, we use the following theorem:

Theorem 1. For the clustering defined in Def. 7 it holds: ∀C ∈ Result : ∀CA ∈
A(C) : (CA ∈ Result ∨ ∃CA′ ∈ Result : CA ≺red CA′).

Proof Assume ∃C ∈ Result, CA ∈ A(C), CA ∈ Clusters \ Result. Following
the maximality property in Def. 7 it holds ∃CA′ ∈ Result : CA ≺red CA′ .

I.e., if an adjacent cluster CA is excluded from the result, there exists a similar
cluster CA′ that is contained in the result. In our implementation, we “reconnect”
the cluster C to CA′ , if this connection does not yet exist. In Fig. 3, the result
is {C1, C3, C4, C5}. ��

4 The HSC Algorithm

In this section we give a short overview of the HSC algorithm. While HSC is
partly based on DB-CSC [7], for heterogeneous networks novel challenges arise,
which we discuss in this section. First, we explain the overall processing of the
algorithm, followed by a detailed description of the refinement of a cluster.

Density-Based Subspace Clustering in Heterogeneous Networks 157

method: main()
1 Result = ∅ // current result set
2 queue = ∅ // priority queue, sorted by quality
3 for i = 1, · · · , T do A(Vi) = {Vj | 1 ≤ j ≤ T, j 	= i}
4 Detect set netclus of network-only clusters
5 if network-only clusters are allowed then
6 add all network clusters to queue

7 for C ∈ netclus, d ∈ Dimt(O) do DFS trav(O, {d})
8 repeat
9 Sort queue ascendingly by dimensionality

10 for C = (O,S) ∈ queue : A(C) has changed do
11 refine cluster(C)

12 until adjacency between clusters converges
13 while queue 	= ∅ do
14 remove first cluster Clus from queue
15 if ∃C = (O,S) ∈ Result : Clus ≺red C then
16 “reconnect” Clus’s connections to C
17 goto line 13 // discard redundant cluster

18 Result = Result ∪ {Clus}
19 return Result
method: DFS trav(vertex set O of type t, subspace S)
20 foundClusters = refine cluster(C = (O,S))
21 add foundClusters to queue
22 for Ci = (Oi, S) ∈ foundClusters do
23 for d ∈ {max{S} + 1, . . . , Dimt} do
24 DFS trav(Oi, S ∪ {d}) // check subsets of Oi

Algorithm 1. Pseudo-Code for the HSC algorithm

The pseudo-code for HSC is given in Algorithm 1. The final result set Result
is initialized as an empty set (line 1), which is then filled iteratively by the
algorithm until it contains the final, non-redundant clustering result defined in
Def. 7. However, when a TCSC cluster C is detected during the processing, it can
not directly be decided if C should be added to the clustering result, as a higher-
quality cluster C′ could be detected later such that C ≺red C′ holds. Therefore,
all detected clusters are temporarily stored in a priority queue queue (initialized
in line 2) that is sorted according to the interestingness of the clusters.

From the definition of the combined neighborhood and the subspace distance,
it follows that our TCSC clusters fulfill an anti-monotonicity property w.r.t. the
subspaces, i.e. if there exists a cluster C = (O,S) in subspace S, then for each
subspace S′ ⊂ S there exists a vertex set O′ ⊃ O such that (O′, S′) also forms
a TCSC cluster. This property can be exploited algorithmically: In order to
detect clusters in higher-dimensional subspaces, the algorithm only has to check
subsets of the vertex sets of the detected lower-dimensional clusters. Therefore,
HSC starts by detecting clusters based only on the network information (i.e.
clusters with the empty subspace). However, for heterogeneous networks, already
the detection of these “network-only” clusters is a challenging problem. Because
a cluster is defined based on its adjacent clusters of the other types, we can
not simply determine the clusters for each type separately. Thus, the algorithm
has to iteratively update the clusters and connections. A small example for the
iterative processing on a paper-author network is illustrated in Fig. 4. If the

158 B. Boden, M. Ester, and T. Seidl

Refine paper
clusters

Refine paper
clusters

Refin
e author

clu
ste

rs

Fig. 4. Example for the detection
of network clusters

1
1

7
8

A

1

2
3

B

1
2C

2
2 D

2
2

E 4
1F

8
4

38
11

2
C3

C1
1
1

7
8

A

1

2
3

B
1
2

C
2
2D2

2

E

4
1F

8
4

38
11

2
C3

C2

Refine C2 in
subspace {1,2}

Original
edges

Edges of enriched
subgraph

Fig. 5. Example for typed enriched subgraph

user allows clusters with empty subspace in the result, the network clusters are
added to the queue (line 6). Based on the detected “network-only” clusters, HSC
can now detect clusters in higher-dimensional subspaces (line 7). Based on these
clusters, a depth-first search is performed in the subspaces5 (line 20 – 24). Here,
max{S} denotes the dimension with maximal ID in subspace S.

Also for the higher-dimensional clusters, we encounter the challenge that the
clusters of the different types depend on each other. During the DFS traversal,
each cluster was refined based on the adjacent clusters that were currently known
at the time of refinement. For many clusters in the queue, the set of adjacent
clusters may have changed. Therefore, these clusters are refined based on the
updated set of adjacent clusters (line 10 – 11). This process is repeated until the
sets of adjacent clusters do not change anymore (line 12). For this step, the clus-
ters are sorted ascendingly by dimensionality, as clusters of lower dimensionality
tend to be connected to more clusters of the other types. After the set of clusters
and adjacencies has converged, HSC detects the final clustering by processing
the priority queue (sorted by quality), discarding clusters that are redundant
w.r.t. a cluster already in the result set and adding non-redundant clusters to
the result (line 18).

Refinement Based on Adjacent Clusters. Given a cluster candidate (i.e. a set of
vertices O, a set of adjacent clusters and a subspace), the refinement method
for the detection of TCSC clusters returns the set of all valid TCSC clusters
with vertex sets O′ ⊆ O based on this subspace and adjacent clusters. The
refinement method is based on a structure named typed enriched subgraph, which
represents the similarity of the attributes in the considered subspace as well as
the connectedness of the vertices via the adjacent clusters. In the typed enriched
subgraph for a vertex set O, each vertex is connected to all vertices from its
combined neighborhood (Def. 3), which is determined based on a given subspace
S and using the connections via the vertices of O itself and of a vertex set OA,
which represents the vertices of all adjacent clusters:

5 In practice, we can save computations and avoid the detection of some redundant
clusters by using a technique from [7] that avoids the traversal of subspaces where
probably only redundant clusters will be detected. Its details can be found in [7].

Density-Based Subspace Clustering in Heterogeneous Networks 159

method: refine cluster(cand. C = (O,S) of type t)
1 foundClusters = ∅, prelimClusters = {C}
2 for CA ∈ A(C) do remove C from A(CA)
3 while prelimClusters 	= ∅ do
4 remove first Cx = (Ox, S) from prelimClusters
5 compute adj. vertex set OA = ∪(Oi,Si)∈A(Cx)Oi

6 generate typed enriched subgraph GOx
S,OA

7 find (minPtst − 1)-cores Cores = {O′
1, . . . , O

′
m}

8 for each core O′
i determine adjacent clusters A(O′

i)

9 if |Cores| = 1 ∧ O′
1 = Ox then

10 foundClusters = foundClusters ∪ {(O′
1, S)}

11 else prelimClusters = prelimClusters ∪ Cores

12 return foundClusters

Algorithm 2. Method for refining a single cluster

Definition 8 (Typed Enriched Subgraph). 6 Given a set of vertices O ⊆ Vi,
a subspace S, the original graph G = (V,E, l) and a vertex set OA ⊆ V \ Vi,
the enriched subgraph GO

S,OA
= (V ′, E′) w.r.t. OA is defined by V ′ = O and

E′ = {(u, v) | v ∈ NO∪OA

S (u) ∧ v �= u} using the distance function distS.

To fulfill the density property, each vertex in a TCSC cluster of type t has to
have at leastminPtst vertices in its combined neighborhood (which also contains
the vertex itself). In the enriched subgraph, a TCSC cluster thus corresponds to
a (minPtst − 1)-core. In [7], it has been shown that the combined clusters can
be detected by iteratively detecting (minPts− 1)-cores. Our method for finding
TCSC clusters works in a similar fashion. The pseudo-code for the refinement
method is given in Algorithm 2. If a candidate C = (O,S) is refined, first
the connection to C is removed from its adjacent clusters, which will later be
connected to the new clusters detected in subsets of O (line 2). Then, HSC
iteratively detects clusters in subsets of O (line 5 – 7). If O was not changed by
the core-detection (line 9), the refinement has converged and the found vertex set
is a cluster. However, if one or several smaller cores were detected, they cannot
directly be output as clusters, because their adjacent clusters may have changed.
Thus, the procedure is repeated (line 11) until convergence.

Fig. 5 shows an example for the graph from Fig. 2. Assume C2 (in subspace
{2}) and C3 and their connection have already been detected. Now, we want to
refine C2 for the subspace {1, 2}. Thus, we construct the typed enriched subgraph
for the vertices of C2 based on this subspace and the vertices of C3, and obtain
the new cluster {A,B,C,D,E} for the subspace {1, 2}.

5 Experiments

In this section we evaluate the performance of HSC (implemented in Java). We
compare HSC to the algorithm of Tang et al. [17], the only existing algorithm for

6 Please note that the typed enriched subgraph of a vertex set contains only vertices of
the same type. However, it is determined using the combined neighborhood, which
takes the connections to the adjacent clusters into account.

160 B. Boden, M. Ester, and T. Seidl

clustering heterogeneous networks that also separates vertices of different types
into different clusters and (in its extension) considers vertex attributes.7

Data Sets. For our experiments, we use two heterogeneous real-world data sets
that each contain several vertex attributes. Yelp is a website where users can rate
and review businesses. Our yelp network was extracted from the yelp academic
data set (http://www.yelp.com) and has three vertex types: “User”, “Business”
and “Review”. The network contains all the businesses from the academic data
set that belong to the categories “Restaurant” and “Pizza”, all the users who
rated at least one of these businesses and all of the corresponding reviews. Over-
all, there are 6931 user vertices, 283 business vertices and 8584 review vertices.
A review vertex is connected to the user who submitted this review as well as
to the business it rates. Furthermore, the network also contains intra-type edges
and thus is not tripartite: Two businesses are connected by an edge if they are
located close to each other (up to 300m apart). For all vertex types, the data set
provides additional attribute information: For the businesses, we have the at-
tributes “review count” (number of ratings received) and “average rating” (from
1 to 5 stars). For the users, we also have “review count” (number of ratings
submitted) and “average rating” (of the ratings by this user). Furthermore, user
vertices have the attributes “funny”, “useful” and “cool”, which correspond to
attributes given to the reviews of a user by other users. Review vertices have the
single attribute “stars”. All values were normalized to [0, 1].

Our second network was extracted from the DBLP (http://dblp.uni-trier.de)
database and has the vertex types “Author” and “Paper”. It contains all papers
of selected conferences from the database and data mining area from the years
2000 to 2004. Each paper is connected to the vertices representing its authors.
Authors vertices do not contain attributes. The papers have binary attributes
indicating the occurrence of certain keywords in the title. To avoid irrelevant key-
words, only words that occurred in at least 100 papers are represented. Overall,
we have 5497 author vertices and 3354 paper vertices with 208 attributes.

Experiments on Yelp Data. As no ground truth for the clustering is available, we
can not evaluate the clustering quality directly. Therefore, we divide the edges of
the Yelp data set into a training set (95% of the edges) and a test set (5% of the
edges). Using these data sets, we obtain an accuracy measure that measures how
well the test edges are predicted by the result of HSC, i.e. which percentage of the
test edges connect vertices from adjacent clusters in our result. We also create a
test set of edges between vertices that are not connected in the network and use
this set to obtain a “false positive” rate. Please note that we can not expect to
reach perfect or nearly perfect accuracy values using this measure, as this would
only be possible for graphs where the clusters correspond to fully connected
cliques and no edges between clusters exist, which does not hold for real graphs.
However, we can use this measure to compare how well different clustering results
capture the structure of the graph. Using this method, we analyze the influence

7 We extended the implementation from the authors homepage for attribute values as
described in [17] and treat our networks as networks with a single time stamp.

Density-Based Subspace Clustering in Heterogeneous Networks 161

of parameters on the result. In each experiment, we measure the percentage
of correctly predicted edges and of correctly predicted non-existing edges. This
method can be used for finding good parameter setting. For each parameter, we
choose the value maximizing the minimum of both accuracy values. For HSC, we
vary the values for ε and minPts for each type. The parameter k is discrete and
is set as discussed in Section 3. For the method from [17], the number of clusters
for each type has to be given as a parameter, thus we vary these values. However,
for this method computing the accuracy is problematic, as it does not produce
binary connections between clusters. Instead, we consider the group interaction
matrix A that is used by [17] and interpret positive entries as “connection” and
negative entries as “no connection”.

To analyze the advantage of our heterogeneous clustering method over clus-
tering methods for homogeneous graphs, we test a baseline that projects the
heterogeneous network to one homogeneous network for each vertex type (e.g.
connecting two users if they are connected to the same business in the heteroge-
neous network) and then uses DB-CSC [7] on each network separately. To enable
a comparison with the results of HSC, this baseline detects connections between
the clusters from the different networks in a post-processing step. To analyze the
influence of subspace clustering on our results, we also test a fullspace version
of HSC that detects only clusters that show similarity in all dimensions.

The results for the “user” vertex type are shown in Fig. 6. The experiments
for the other vertex types show similar results (not printed here due to space
limitations). For the parameter minPtsuser, increasing values lead to a lower
accuracy for the test edges and a higher accuracy for the non-existing test edges
(Fig. 6(a)). This is due to the fact that for higherminPts values, less and smaller
TCSC clusters are detected due to the stricter density criterion. Therefore, less
correct edges, but also less non-existing edges are predicted by the clustering
result. According to this results, we set minPtsuser = 50. The baseline cluster-
ing the homogeneous projections of the network separately reaches very similar
values in the accuracy for test edges. However, the accuracy for non-existing
test edges is considerably worse than for HSC. This is due to the fact that
this method cannot use the information about the clustering structure of the
other vertex type, and thus also clusters vertices together that are connected via
noise vertices of the other type. Therefore, the resulting clusters are supersets
of the TCSC clusters and the predicted connections show worse accuracy for
non-existing test edges. We also evaluate the fullspace version of HSC in this
experiment. We observe that only few clusters can be found in the fullspace and
thus the accuracy value for existing edges is very low. For values greater than
25, the fullspace version detects no clusters at all. Therefore, the fullspace ver-
sion is not used in the following experiments. The runtimes for all versions (Fig.
6(b)) decrease for increasing minPts values, as less clusters are detected. The
runtimes of HSC are slightly higher than those of the fullspace version of HSC,
as the fullspace version does not have to look for clusters in different subspaces.
The method clustering homogeneous networks shows far higher runtimes, as it

162 B. Boden, M. Ester, and T. Seidl

0

20

40

60

80

100

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90Co
rr
ec
tly

Pr
ed

ic
te
d
Ed

ge
s(
%
)

minPts_user

HSC HSC (Non Ex. Edges)
Homogeneous Homogeneous (Non Ex. Edges)
Fullspace Fullspace (Non Ex. Edges)

(a) Accuracy vs. minPtsuser for HSC

0

2,000

4,000

6,000

8,000

10,000

12,000

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

ru
nt
im

e
[s
ec
]

minPts_user

HSC Homogeneous Fullspace

(b) Runtime vs. minPtsuser for HSC

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Co
rr
ec
tly

Pr
ed

ic
te
d
Ed

ge
s(
%
)

epsilon_user

HSC
HSC (Non Existing Edges)
Homogeneous
Homogeneous (Non Existing Edges)

(c) Accuracy vs. εuser for HSC

0

2,000

4,000

6,000

8,000

10,000

12,000

0 0.2 0.4 0.6 0.8

ru
nt
im

e
[s
ec
]

epsilon_user

HSC Homogeneous

(d) Runtime vs. εuser for HSC

0

20

40

60

80

100

0 20 40 60 80 100

Co
rr
ec
tly

Pr
ed

ic
te
d
Ed

ge
s(
%
)

number of user clusters

[TLZ12] [TLZ12] (Non Existing Edges)

(e) Accuracy vs. #user clusters for [17]

0

100

200

300

0 20 40 60 80 100

ru
nt
im

e
[s
ec
]

number of user clusters

(f) Runtime vs. #user clusters for [17]

Fig. 6. Experimental results on the Yelp data set with 3 vertex types

has to cluster all networks separately and cannot use the information about the
clustering structure of the respective other vertex types for pruning.

For an increasing εuser , both accuracy values for HSC remain relatively stable
(Fig. 6(c)). Like in the previous experiment, the homogeneous clustering variant
shows similar behavior in the accuracy for test edges and considerably worse
values for the accuracy for non-existing test edges. The runtime (Fig. 6(d))
increases quickly for increasing ε-values until it reaches a plateau, as for higher
ε-values larger vertex neighborhoods have to be considered. Again, the runtime
of the homogeneous variant is far higher than that of HSC.

For the method from [17], we do not observe a trend in the accuracy for
an increasing number of user clusters (Fig. 6(e)). In contrast to HSC, in this
partitioning method each vertex is grouped in exactly one cluster, thus the trend
described above does not occur here. The accuracy for test edges is considerably
lower than that of HSC, while a high accuracy for non-existing edges is obtained.

Density-Based Subspace Clustering in Heterogeneous Networks 163

ec
m

l

sd
m

kd
d

ic
dm

ci
km

ic
de

sig
m

od

vl
db

da
sf

aa

ss
db

m

(a) HSC

ec
m

l

sd
m

kd
d

ic
dm

ci
km

ic
de

sig
m

od

vl
db

da
sf

aa

ss
db

m

(b) Method from [17]

Fig. 7. Distribution of paper clusters over conferences for the DBLP data set (heat map
color gradient from Green=“0%” to Red=“100% of the papers in the cluster belong to
this conference”)

This shows that this approach predicts less connections between clusters for the
3-type network. Overall, the method shows far lower runtimes than HSC (Fig.
6(f)), as it does not consider subspaces of the attribute space and does not
exclude outliers. However, HSC reaches better accuracy values: We can find
parameter settings such that both accuracy values for HSC are about 60%.

Experiments on DBLP Data. On DBLP, HSC detects 14 author clusters with an
average size of 59 and 98 paper clusters with an average size of 10 and average
dimensionality of 1.05, i.e. most of the paper clusters have one or two keywords in
common. The method from [17] detects 20 paper clusters with an average size of
168 and 20 author clusters with an average size of 275. As this method does not
consider subspace clusters, there is no information about the relevant keywords
for the clusters; the papers in a cluster do not necessarily have common keywords
at all. However, considering subspaces and connections between clusters also
causes higher runtimes: The runtime was 5 sec. for the method from [17] and
278 sec. for HSC. To provide an impression of the detected clusters, we depict the
distribution of the detected paper clusters over the conferences in Fig. 7. Each
row in the diagrams corresponds to a paper cluster. For most of the clusters
detected by HSC, the papers in the cluster belong to a small set of conferences.
Particularly, most clusters show a clear tendency either to the database area or
the data mining area. For the method from [17], the tendency is less clear.

6 Conclusion

We propose the clustering model TCSC for the clustering of vertices in hetero-
geneous networks, which takes into account the connections in the network as
well as the vertex attributes. Furthermore, TCSC detects interactions between
clusters of different types. TCSC is the first clustering model which considers
subspace clustering in heterogeneous networks. We introduce the algorithm HSC
for computing the TCSC clustering.

164 B. Boden, M. Ester, and T. Seidl

Acknowledgements. This work has been supported by the B-IT Research
School of the Bonn-Aachen International Center for Information Technology.

References

1. Akoglu, L., Tong, H., Meeder, B., Faloutsos, C.: Pics: Parameter-free identification
of cohesive subgroups in large attributed graphs. In: Proceedings of the Twelfth
SIAM International Conference on Data Mining, pp. 439–450 (2012)

2. Barber, M.: Modularity and community detection in bipartite networks. Phys. Rev.
E 76(6), 066102 (2007)

3. Boden, B.: Combined Clustering of Graph and Attribute Data. Ph.D. thesis,
RWTH Aachen University, Aachen (2014)

4. Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs
in multi-layer graphs with edge labels. In: SIGKDD, pp. 1258–1266 (2012)

5. Gao, B., Liu, T., Zheng, X., Cheng, Q., Ma, W.: Consistent bipartite graph co-
partitioning for star-structured high-order heterogeneous data co-clustering. In:
SIGKDD, pp. 41–50 (2005)

6. Günnemann, S., Färber, I., Boden, B., Seidl, T.: Subspace clustering meets dense
subgraph mining: A synthesis of two paradigms. In: ICDM (2010)

7. Günnemann, S., Boden, B., Seidl, T.: Finding density-based subspace clusters in
graphs with feature vectors. DMKD 25(2), 243–269 (2012)

8. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A sur-
vey on subspace clustering, pattern-based clustering, and correlation clustering.
TKDD 3(1), 1–58 (2009)

9. Li, X., Ng, M.K., Ye, Y.: Multicomm: Finding community structure in multi-
dimensional networks. TKDE 99(PrePrints), 1 (2013)

10. Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs
with feature vectors. In: SDM, pp. 593–604 (2009)

11. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Com-
munity structure in time-dependent, multiscale, and multiplex networks. Sci-
ence 328(5980), 876–878 (2010)

12. Shiga, M., Takigawa, I., Mamitsuka, H.: A spectral clustering approach to optimally
combining numerical vectors with a modular network. In: SIGKDD, pp. 647–656
(2007)

13. Sun, Y., Aggarwal, C., Han, J.: Relation strength-aware clustering of heterogeneous
information networks with incomplete attributes. VLDB 5(5), 394–405 (2012)

14. Sun, Y., Norick, B., Han, J., Yan, X., Yu, P., Yu, X.: Integrating meta-path selec-
tion with user-guided object clustering in heterogeneous information networks. In:
SIGKDD, pp. 1348–1356 (2012)

15. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information
networks with star network schema. In: SIGKDD, pp. 797–806 (2009)

16. Suzuki, K., Wakita, K.: Extracting multi-facet community structure from bipartite
networks. In: CSE, vol. 4, pp. 312–319 (2009)

17. Tang, L., Liu, H., Zhang, J.: Identifying evolving groups in dynamic multimode
networks. TKDE 24(1), 72–85 (2012)

18. Tang, L., Wang, X., Liu, H.: Community detection via heterogeneous interaction
analysis. DMKD 25(1), 1–33 (2012)

19. Yang, J., McAuley, J.J., Leskovec, J.: Community detection in networks with node
attributes. In: ICDM, pp. 1151–1156 (2013)

20. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. PVLDB 2(1), 718–729 (2009)

	Density-Based Subspace Clusteringin Heterogeneous Networks
	1 Introduction
	2 Related Work
	3 The TCSC Clustering Model
	4 The HSC Algorithm
	5 Experiments
	6 Conclusion
	References

